

Environmental Product Declaration

In accordance with ISO14025:2006 and EN15804:2012+A2:2019

Natural-stone-quartzite-schist--even-thickness--with-broken-or-sawn-edges

The Norwegian EPD Foundation

Owner of the declaration:

Minera Skifer AS

Product name:

Natural stone quartzite schist, even thickness, with broken or sawn edged

Declared unit:

1 tonne

Product category /PCR:

CEN Standard EN 15804:2012+A2:2019 serves as core PCR NPCR 018:2022 Part B for natural stone products, aggregates and fillers

Program holder and publisher:

The Norwegian EPD foundation

Declaration number:

NEPD-12724-12968

Registration number:

NEPD-12724-12968

Issue date: 24.10.2025

Valid to: 24.10.2030

General information

Product:

Natural stone quartzite schist, even thickness, with broken or sawn edges

Program operator:

The Norwegian EPD Foundation Post Box 5250 Majorstuen, 0303 Oslo, Norway

Phone: +47 23 08 80 00 e-mail: post@epd-norge.no

Declaration number:

NEPD-12724-12968

This declaration is based on Product Category Rules:

CEN Standard EN 15804:2012+A2:2019 (core PCR, NPCR 018:2022 Part B for natural stone products, aggregates and fillers

Statement of liability:

The owner of the declaration shall be liable for the underlying information and evidence. EPD Norway shall not be liable with respect to manufacturer, life cycle assessment data and evidences.

Declared unit:

1 tonne Minera Natural stone

Declared unit with option:

A1-A3, A4, C1, C2, C3, C4, D

Functional unit:

Not applicable

Verification:

Independent verification of the declaration and data, according to ISO14025:2010

internal |

external $\sqrt{}$

namal

Independent verifier approved by EPD Norway

Owner of the declaration:

Minera Skifer AB

Contact person: Per Göran Pettersson
Phone: +46 70 202 33 04
e-mail: pg@mineraskiffer.se

Manufacturer:

Minera Skifer AB

S-835 98 Östersund, Sweden

Phone: + 46 63 20860

e-mail: info@mineraskifer.no

Place of production:

Finnsäter, Offerdal, Sweden

Management system:

-

Organisation no:

SE 556124-3212

Issue date:

24.10.2025

Valid to:

24.10.2030

Year of study:

2024

Comparability:

EPD of construction products may not be able to compare if they do not comply with EN 15804 and are seen in a building context.

The EPD has been worked out by:

Silje Wærp. Asplan Viak

Approved

Manager of EPD Norway

Product

Product description:

Schist from Offerdal has a high content of quartz and feldspar. Schist from Offerdal is a hard and solid natural stone with a dark grey surface. Honed surface has varying shades of grey. Due to its high abrasion and slip resistance, it is also very suitable for use in areas with high traffic.

Natural stone quaerzire schist, natural cleft/brushed/honed surface, sawn/cut edge are used for pavement block, massive slabs, wall cladding, flooring tiles, brick, slabs and steps.

Product specification:

Materials	Value	%
Natural stone 1000 kg	1	100

Technical data:

Technical Properties - Quartzite Schist from Offerdal (Mean Values)

Property	Standard	Value	Unit	
Petrography	EN 12407	Quartzite	_	
retrography	EN 12407	schist		
Density	EN 1936	2.74	kg/m ³	
Water absorption	EN 13755	0.1	weight %	
Frost resistance	_	Yes	_	
Flexural strength	EN 12372	48.5	MPa	

Market:

Nordic

Reference service life, product:

Depending of the application

Reference service life, building:

50 years

Additional technical information

Conversion of results from per ton to per m^2 can be done by multiplying the result with the thickness in meters and the density of 2.7 ton/ m^3 .

LCA: Calculation rules

Declared unit:

1 tonne Minera blocks

Cut-off criteria:

All major raw materials and all the essential energy is included. The production processes for raw materials and energy flows with very small amounts (less than 1%) are not included. These cut-off criteria do not apply for hazardous materials and substances.

Allocation:

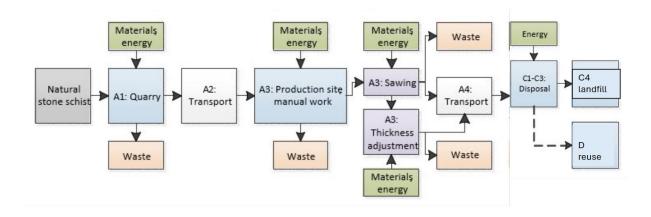
The allocation is made in accordance with the provisions of EN 15804. Incoming energy and water and waste production in-house is allocated equally among all products through economical allocation (extraction of stone) and mass allocation for processing of different natural stone product. Effects of primary production of recycled materials is allocated to the main product in which the material was used. The recycling process and transportation of the material is allocated to this analysis.

Data quality:

Data has been collected in 2025 and is representative of the year 2024 (yearly average). Data for raw material inputs, product manufacturing ((A1–A3) are based on specific data provided by Minera Skifer Offerdal and technical data sheets from suppliers. The main energy sources used are diesel, electricity and pellets. Some steel and other materials are also used, but these represent a minor share compared to the total amount of slate produced.

Consumption data has been provided directly by Minera Skifer Offerdal and is considered to be of high quality. Emission data, particularly greenhouse gas emissions, are theoretical values based on the combustion of fossil fuels (diesel and gas), and are also considered to be of good quality. End-of-Life (C1–C4) are based on information from manufacturers. Generic data for background processes has been modelled using ecoinvent 3.9.1.

Materials	Source	Data quality	Year
Explosives	NEPD-4019-3055- EN, utgitt 2022, gyldig til 2027.	Very good	2022
Extraction: Combustion of diesel in construction machine Based on "Transport, freight, lorry >32 metric ton, EURO6 {RER} transport, freight, lorry >32 metric ton, EURO6 Cut-off, U"	Ecoinvent v 3.9.1	Very good	2022
Electricity, low voltage {SE} market for Cut-off, U	Ecoinvent v 3.9.1	Very good	2022
Heat, central or small-scale, other than natural gas {CH} heat production, softwood chips from forest, at furnace 50kW Cut-off, U – changed to pellets	Ecoinvent 3.2	Good	2022



System boundaries (X=included, MND=module not declared, MNR=module not relevant)

Prod	duct st	tage		embly age	Use stage End of life stage			Benefits & loads beyond system boundary								
Raw materials	Transport	Manufacturing	Transport	Assembly	Use	Maintenance	Repair	Replacement	Refurbishment	Operational energy use	Operational water use	De-construction demolition	Transport	Waste processing	Disposal	Reuse-Recovery-Recycling- potential
A1	A2	А3	A4	A5	B1	B2	В3	B4	В5	В6	В7	C1	C2	C3	C4	D
X	X	X	X	MND	MND	MND	MND	MND	MND	MND	MND	X	X	X	X	X

System boundary:

This EPD covers the production and transport of explosives (modules A1 and A2) used in the extraction of stone. Natural stone blocks do not undergo any treatment. The products are transported at site at Minera Offerdal for further processing (A 3 sawing and thickness adjustment). The end-of-life scenario for natural stone products is adopted in modules C and D.

LCA: Scenarios and additional technical information

The following information describe the scenarios in the different modules of the EPD. Production in Sweden. Product is transported from Sweden to Norway. Waste scenarios are considered for Norway.

Transport from production place to assembly/user (A4)

Transport from production place to assembly/user (A4)	Capacity utilisation (incl. return) [%]	Distance [km]	Fuel/Energy consumption	Unit	Value Liter/tonne
Transport, freight, lorry >32 metric ton, EURO5 {RER} transport, freight, lorry >32 metric ton, EURO5 Alloc Rec, U – modified to 0,34 l/km, 24 ton load. Justified to 81 % fossil diesel and 19 % biodiesel,	56	650	0,017	l/tkm	11,1

All production is normally delivered directly from Offerdal to building site. As scenario adistance of 650 km delivered by lorry (>32 t) is calculated. This is corresponding to the distance from Offerdal - Oslo/Stockholm.

End of Life (C1, C3, C4)

	Unit	Value
Hazardous waste disposed	kg	0
Collected as mixed construction waste	kg	0
Reuse	kg	0
Recycling	kg	1000
Energy recovery	kg	0
To landfill	kg	0

It is assumed that the slate is recycled together with other inert materials. No energy for crushing is needed. The scenario for use, is fill material in noise barriers along roads. Therefore, no emissions from waste treatment have been considered. Transport to waste processing is included(C2), 50 km.

Transport to waste processing (C2)

Transport from production place to assembly/user (C2)	Capacity utilisation (incl. return) [%]	Distance [km]	Fuel/Energy consumption	Unit	Value Liter/tonn
Truck: Transport, freight, lorry 16-32 metric ton, EURO5 {RER} transport, freight, lorry 16-32 metric ton, EURO5 Alloc Rec, U	56	50	0,045	l/tkm	2.25

Benefits and loads beyond the system boundaries (D)

Benefits and loads beyond the system boundaries (D)	Unit	Value
Substitution of stone materials	kg	1000

LCA: Results

The result tables are given using a location based approach for foreground system (A3) More information about transparent reporting of electricity in the additional requirements section.

Core environmental impact indicators

dore on a monetar impact marcators										
Indicator	Unit	A1-A3	A4	C1	C2	С3	C4	D		
GWP - total	kg CO2 eq	1,21E+02	4,91E+01	0,00E+00	3,77E+00	0,00E+00	0,00E+00	-1,21E+02		
GWP - fossil	kg CO2 eq	1,19E+02	4,90E+01	0,00E+00	3,77E+00	0,00E+00	0,00E+00	-1,19E+02		
GWP - biogenic	kg CO2 eq	0,00E+00								
GWP - luluc	kg CO2 eq	1,76E+00	2,05E-02	0,00E+00	1,58E-03	0,00E+00	0,00E+00	-1,76E+00		
ODP	kg CFC11 eq	1,09E-06	1,09E-06	0,00E+00	8,39E-08	0,00E+00	0,00E+00	-1,09E-06		
AP	molc H+ eq	5,30E-01	2,02E-01	0,00E+00	1,55E-02	0,00E+00	0,00E+00	-5,30E-01		
EP- freshwater	kg P eq	8,67E-02	4,12E-03	0,00E+00	3,17E-04	0,00E+00	0,00E+00	-8,67E-02		
EP -marine	kg N eq	1,23E-01	7,29E-02	0,00E+00	5,60E-03	0,00E+00	0,00E+00	-1,23E-01		
EP - terrestrial	molc N eq	1,33E+00	7,94E-01	0,00E+00	6,11E-02	0,00E+00	0,00E+00	-1,33E+00		
POCP	kg NMVOC eq	3,74E-01	3,13E-01	0,00E+00	2,41E-02	0,00E+00	0,00E+00	-3,74E-01		
ADP-M&M ²	kg Sb-Eq	2,88E-03	1,21E-04	0,00E+00	9,31E-06	0,00E+00	0,00E+00	-2,88E-03		
ADP-fossil ²	MJ	2,24E+03	6,97E+01	0,00E+00	5,36E+00	0,00E+00	0,00E+00	-2,24E+03		
WDP ²	m^3	2,39E+02	3,95E+00	0,00E+00	3,04E-01	0,00E+00	0,00E+00	-2,39E+02		

GWP-total: Global Warming Potential; GWP-fossil: Global Warming Potential fossil fuels; GWP-biogenic: Global Warming Potential biogenic; GWP-LULUC: Global Warming Potential and use and land use change; ODP: Depletion potential of the stratospheric ozone layer; AP: Acidification potential, Accumulated Exceedance; EP-freshwater: Eutrophication potential, fraction of nutrients reaching freshwater end compartment; See "additional Norwegian requirements" for indicator given as PO4 eq. EP-marine: Eutrophication potential, fraction of nutrients reaching freshwater end compartment; EP-terrestrial: Eutrophication potential, Accumulated Exceedance; POCP: Formation potential of tropospheric ozone; ADP-M&M: Abiotic depletion potential for non-fossil resources (minerals and metals); ADP-fossil: Abiotic depletion potential for fossil resources; WDP: Water deprivation potential, deprivation weighted water consumption

Reading example: $9.0 \text{ E}-03 = 9.0*10^{-3} = 9.0*\frac{1}{10}*\frac{1}{10}*\frac{1}{10}=0.009$ $9.0 \text{ E}+03 = 9.0*10^{3} = 9.0*10*10*10=9000$

Additional environmental impact indicators

11010110101101	i environniei	Tour Timp are a						
Indicator	Unit	A1-A3	A4	C1	C2	С3	C4	D
PM	Disease incidence	1,36E-05	5,36E-06	0,00E+00	4,12E-07	0,00E+00	0,00E+00	-1,36E-05
IRP ¹	kBq U235 eq.	1,52E+02	1,18E+00	0,00E+00	9,07E-02	0,00E+00	0,00E+00	-1,52E+02
ETP-fw ²	CTUe	6,55E+02	3,64E+02	0,00E+00	2,80E+01	0,00E+00	0,00E+00	-6,55E+02
HTP-c ²	CTUh	5,67E-08	1,10E-08	0,00E+00	8,42E-10	0,00E+00	0,00E+00	-5,67E-08
HTP-nc ²	CTUh	3,18E-06	7,72E-07	0,00E+00	5,94E-08	0,00E+00	0,00E+00	-3,18E-06
SQP ²	Dimensionless	4,18E+03	1,80E+03	0,00E+00	1,39E+02	0,00E+00	0,00E+00	-4,18E+03

PM: Particulate matter emissions; IRP: Ionising radiation, human health; ETP-fw: Ecotoxicity (freshwater); ETP-c: Human toxicity, cancer effects; HTP-nc: Human toxicity, non-cancer effects; SQP: Land use related impacts / soil quality

¹ This impact category deals mainly with the eventual impact of low dose ionizing radiation on human health of the nuclear fuel cycle. It does not consider effects due to possible nuclear accidents, occupational exposure nor due to radioactive waste disposal in underground facilities. Potential ionizing radiation from the soil, from radon and from some construction materials is also not measured by this indicator.

² The results of this environmental impact indicator shall be used with care as the uncertainties on these results are high or as there is limited experienced with the indicator

Resource use

Parameter	Unit	A1-A3	A4	C1	C2	С3	C4	D
PERE	MJ	2,07E+03	1,50E+01	0,00E+00	1,15E+00	0,00E+00	0,00E+00	-2,07E+03
PERM	MJ	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00
PERT	MJ	2,07E+03	1,50E+01	0,00E+00	1,15E+00	0,00E+00	0,00E+00	-2,07E+03
PENRE	MJ	2,24E+03	6,97E+01	0,00E+00	5,36E+00	0,00E+00	0,00E+00	-2,24E+03
PENRM	MJ	1,06E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	-1,06E+00
PENRT	MJ	2,24E+03	6,97E+01	0,00E+00	5,36E+00	0,00E+00	0,00E+00	-2,24E+03
SM	kg	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00
RSF	MJ	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00
NRSF	MJ	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00
FW	m^3	7,16E+00	1,16E-01	0,00E+00	8,89E-03	0,00E+00	0,00E+00	-7,16E+00

PERE Renewable primary energy resources used as energy carrier; **PERM** Renewable primary energy resources used as raw materials; **PERT** Total use of renewable primary energy resources; **PENRE** Nonrenewable primary energy resources used as energy carrier; **PENRM** Nonrenewable primary energy resources used as materials; **PENRT** Total use of non-renewable primary energy resources; **SM** Use of secondary materials; **RSF** Use of renewable secondary fuels; **FW** Use of not fresh water.

End of life - Waste

Parameter	Unit	A1-A3	A4	C1	C2	С3	C4	D
HWD	kg	3,84E-01	2,28E-02	0,00E+00	1,75E-03	0,00E+00	0,00E+00	-3,84E-01
NHWD	kg	3,90E+03	8,68E+01	0,00E+00	6,67E+00	0,00E+00	0,00E+00	-3,90E+03
RWD	kg	3,28E-02	2,92E-04	0,00E+00	2,25E-05	0,00E+00	0,00E+00	-3,28E-02

HWD Hazardous waste disposed; NHWD Non-hazardous waste disposed; RWD Radioactive waste disposed.

End of life - output flow

Parameter	Unit	A1-A3	A4	C1	C2	С3	C4	D
CRU	kg	0,00E+00						
MFR	kg	6,10E-01	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	-6,10E-01
MER	kg	0,00E+00						
EEE	MJ	2,78E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	- 2,78E+00
EET	MJ	2,71E+01	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	- 2,71E+01

CRU Components for reuse; MFR Materials for recycling; MER Materials for energy recovery; EEE Exported electric energy; EET Exported thermal energy.

Information describing the biogenic carbon content at the factory gate

Biogenic carbon content	Unit	Value
Biogenic carbon content in product	kg C	0
Biogenic carbon content in the accompanying packaging	kg C	0,11

Note: 1 kg biogenic carbon is equivalent to 44/12 (approx. 3.67) kg CO_2

Additional requirements

Transparent reporting of energy

The EPD provides in the main result tables environmental impact categories based on a location based approach. The information below is provided so EPD users are able to understand the effect of these methodological choices.

The table below shows calculation of GWP-total for energy resources used in the manufacturing process (A3) for each approach.

Energy source	Data source	Amount*	Unit	GWP _{total} [kg CO ₂ - eq/unit]	SUM [kg CO ₂ - eq]
Location based approach					
Electricity, low voltage {SE} market for Alloc Rec, U	Simapro	300	kWh	67,3	
Market based approach					
Guarantees of origin or: Residual mix electricity, foreground	Simapro	300	kWh	80,4	24,12
Certified biogas or: Residual mix gas, foreground	N.R	-	[unit]	-	-

The residual mix is calculated using the following methodology:

The residual mix of a country is calculated based on the domestic residual mix for Sweden in Simapro.

For a detailed description of the methodology refer to - grexel (2020), Issuance Based Residual Mix Calculation Methodology, Published 31.03.2020, Version 1.1, https://www.aibnet.org/sites/default/files/assets/facts/residual-

mix/2022/RM%20EAM%20IB%20Calculation%20Methodology%20V1_2.pdf

Additional environmental impact indicators required for construction products

In order to increase the transparency of biogenic carbon contribution to climate impact, the indicator GWP-IOBC is required as it declares climate impacts calculated according to the principle of instantaneous oxidation. GWP-IOBC is also referred to as GWP-GHG in context to Swedish public procurement legislation.

Parameter	Unit	A1-A3	A4	C1	C2	C3	C4	D
GWP-IOBC	kg CO2- eg.	129,41	47,70	0	3,67	0	0	-129,41

GWP-IOBC Global warming potential calculated according to the principle of instantaneous oxidation.

Hazardous substances

The declaration is based upon reference to threshold values and/or test results and/or material safety data sheets provided to EPD verifiers. Documentation available upon request to EPD owner.

\boxtimes	The product	contains no	substances	given by	the REA	CH Candidate	list

- ☐ The product contains substances given by the REACH Candidate list that are less than 0,1 % by weight.
- $\ \square$ The product contains dangerous substances, more then 0,1% by weight, given by the REACH Candidate List, see table.
- ☐ The product contains no substances given by the REACH Candidate list.
- \Box The product is classified as hazardous waste, see table.

Indoor environment

Not applicable

Carbon footprint

While a carbon footprint analysis has not been conducted for the product separately, the results section does include an evaluation of Global Warming Potential (GWP) with such an analysis. The GWP total results presented in this EPD document represents the carbon footprint of the product studied

Bibliography

LCA report Minera	Wærp, Silje, Oddbjørn Dahlstrøm Andvik LCA-report for Minera Skifer Offerdal.
ISO 14025:2010	Environmental labels and declarations - Type III environmental declarations - Principles and procedures
ISO 14044:2006	Environmental management - Life cycle assessment - Requirements and guidelines
EN 15804:2012+A2:2019	Sustainability of construction works - Environmental product declaration - Core rules for the product category of construction products
ISO 21930:2017	Sustainability in building construction - Environmental declaration of building products
NPCR 018 2020 2022 v1 EPD Norway	Part B for Crushed Stones and Stone Products 15804A2 2022 v.1
ecoinvent v. 3 Inventories	Allocation, cut-off by classification, Swiss Centre of Life Cycle

	Program Operator	Phone:	+47 23 08 80 00
© epd-norway	The Norwegian EPD Foundation		
Global Program Operator	Post Box 5250 Majorstuen, 0303 Oslo	e-mail:	post@epd-norge.no
	Norway	Website:	www.epd-norge.no

	Publisher	tlf	+47 23 08 80 00
© epd-norway	The Norwegian EPD Foundation		
Global Program Operator	Post Box 5250 Majorstuen, 0303 Oslo	e-post:	post@epd-norge.no
	Norway	web	www.epd-norge.no
	Owner of the declaration	Phone:	+ 46 63 20860
~%	Minera Skifer AB	Fax	
MINERA	S-835 98 Östersund, Sweden	e-mail:	info@mineraskifer.no
		Website:	www.mineraskifer.no
	Author of the life cycle assesment	Phone:	48024580
manlan A A	Applem Wiels AC	Fax	
asplan 🥒 🔪	Asplan Viak AS	1 ax	
viak	Oddbjørn Dahlstrøm, Silje Wærp	e-mail:	silje.warp@asplanviak.no
	1		silje.warp@asplanviak.no www.asplanviak.no